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Abstract

We show how the duality theorem of linear progranmiing can be used to

prove several results on general convex optimization.
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Let f, g, ,...,g, be convex functions defined on a convex subset S of

a vector space. Let T = {x^S
|
g . (x)_<0 lj<i<k}. We assume throughout that T

is non-empty.

We use linear programming theory to explore the relationship between

the problem of minimizing f(x) x€T and the Lagrange dual problem of minimizing

f(x) + EX.g.(x) x^s for suitable X.>^0. This is motivated by the work of Duffin

[1, 2, 3]. The main tool we shall need is a version of the duality theorem

of linear programming [5, theorems 1.1.9 and 1.7.13].

Lemma: Let A = {x|Bx2^b and Cx=c}. If A is empty, there are IJ>0 and V

such that U B+V C=0 and Ub+Vc>0. If A is non-empty and every x€A satisfies

dx>e, then there are U>0 and V such that U B+V C=d and Ub+Vc>_e.

We will not require separating hyperplane theorems or results from

semi-infinite programming.

Theorem 1 ; f (x)^L for every x€T if and only if for every finite FCS

there are X, ,...,A, such that f (x)+ZX.g. (x)^L for every x^F.

Proof : The "if" part is immediate. For the "only if" part it suffices

to prove the result for those finite F which contain members of T. Let

F={y^,...,y } y,ST. For such F the system of equations and inequalities in

unknowns 9 ,,..., 6,,
1 N

(°)
E e. = i

1 ^

N
E e.g.(y.)^0 llJlk

e. >
X —

has the solution e,=l. By convexity, if 9 . is a solution to (D) , ES.y ST.
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Since we are assuming f(x)>L for x€T, every solution to (D) must satisfy

Ze f(y.)^L. By the lemma there are X,>^0 and y such that

Y + S X (-g (y )) < f(y.) l<i<N
j=l ^ ^

Y > L

so f(yj) + ^ X.g.(y.)>L for every y.SF. Q.E.D.(y ) + E X g (y )2iL for every y.SF.

Theorem 1 may be used to prove many of the standard results on convex

optimization. As an example we prove the Kuhn-Tucker theorem.

Corollary ; Suppose f(,x)>L for x^T and that there is a y for which

g.(y)<0 l£i£k. Then there are X ,,..,X, such that f(x)+i:X.g (x)>^L for x^S.

Proof: Let & = max {g.(y)}. For x^S let A^={ (X^, . . . ,X|^) |X^>^0,

f(x)+ZX.g.(x)>L, and -6(5;X.)<^f (y)-L}. For each x^S, A is compact. If HCS
1 i X X

is finite we may use theorem 1 with F=Hu{y} to show f^ A is non-empty.

Therefore, P„ A is non-empty, so suitable Lagrange multipliers exist. Q.E.D.

Arguments of this kind can also be used to give information about when

"duality gaps" occur.

Theorem 2 . There are no X. such that f (x)+EX .g. (x)>L for every xSS if

and only if, for every N>0, there is an x^S such that f(x)<L-N(max g. (x)).

l<i<^k

Proof: Take any X.>^0 and suppose x exists with the desired property for

N=2:X.. Then f (x)+i:X .g. (x)j<f (x) + (max g.(x)) (ZX.)<L. So no suitable X^ exist.

Conversely, suppose there are no suitable X.. For any N>0 and any

F={y, , . . . ,y-^}CS consider the linear system in unknowns X ,...,X,





f(y^) + E X g (y^)>L y^SF
3_

J J

(F;N) IX^ < N

X. >
X —

If, for some N, (F;N) had a solution for every finite FCS, a compactness

argument similar to that in the corollary to Theorem 1 would yield suitable

multipliers X,. Since we are assinning such X. do not exist, it must be that

for every N>0 there is an F such that (F;N) has no solution. By the lemma,

if (F;N) has no solution, there are 8-, , • • • . 9j^ 2l ^^^ T^O such that

M
2 Q±sA7J - y±o, l<.j<k

i=l ^

M
and Z9.(L-f(y.)) +y(-N)>0. By scaling, we may assume E 6.=!, so thatIX

3^
1

**
1

S 9,g.(y.)lY<N(L-Ee f(y )).

i=l -

If we take x=E9.y. y>_g.(x), l<j<.k and f(x)<L-NY follow by convexity of

f and g.. Q.E.D.
J

Corollary : (Compare [1], cor. 5; [2], thm. 3): Let h(e)=inf{f (x)
] g^

(x)<e,

l<j_<k. If there are 6>0, L such that h(x)>L for 0^x<&, then there are

X-|,...,Xv^ such that f (x)+SX^g^(x)2L xSS.

Proof: If there is an x for which g (x)<0 the existence of suitable X_^

it
,

follows from the Kuhn-Tucker theorem, so we assume this is not the case.

h is a convex monotone function which, on our assumptions, is defined only

for non-negative arguments. For e>6, h(e)-L>h(e)-h(0)>G(-) (h(6)-h(0)) .
Hem

for xGS, f(x)-L>(max g.(x))(min 0, ^(h(5)-h(0)) ) . (Note that our assumptions

We use the Kuhn-Tucker theorem for brevity. The result could be proved

from Theorem 2 alone.





imply max g. (x)>^0.) Since the condition given by Theorem 2 fails for

N=inax (0, -^ (h(0)-h(6)), suitable X^ exist.) Q.E.D.

Finally, we use a variation of these techniques to strengthen a recent

result of Duffin and Jeroslow [4].

Theorem 3 : Let S=r'^. Assume that for X.>0, f (x)+EX.g. (x)>L, x6S. Then

there are affine functions h. (x)=a.x+b
.
(a.SR , b.€R) such that h.(x)<g^(x)11 1^1 'i' i^ ''—f'l^

and f (x)+EX h (x)2:L, xSS.

Proof: For ySS, let T ={(h^, - . . ,h^) |h^ affine, h(y)_<g(y), and

f(y)+EX^h^(y)2L}.

We identify each function h.(x)=a.x+b. with the ordered pair (a.,b.)Ql

Thus, T is a closed subset of R . We first show that, for any finite FCS

Q T is non-empty. A member of yQ„ T would be a solution to the linear

inequality system in unknowns a^,...,a, ; b,,...,b, .

a^y+b^j<g^(y) llilk; y€F

k
(E) Z X (a y+b )>M-f (y) y€F

i=l

By the lemma, (E) has no solution only if there are scalars W, , V >^0 such that

(i) ^ W y = X Z V y, l<i<k
y€F ^ y€F ^

(ii) Z W. = X. Z V , llilk
y€F ^^ ^ y€F ^

(iii) Z W, ,g, (y)< Z V (M-f(y)).
l<±<}

y€F
lj<i<^k ^^ ^ y€F ^

If there were W,V satisfying (i)-(xii) we could set V'*=V /zV and
y y y

W:.=W. /X.ZV so that (i)-(iii) would be satisfied and, by (ii), ZV'= Z WT =1,
ly ly 1 y > j' ^ ^' ^ y ly »

l_^i^k. Condition (i) becomes ZW' y=ZV'y. Condition (iii) becomes Z V'f(y) +
^y y yGF y

ZX ( Z W;: g.(y))<M. If z=ZW: y=ZV'y this implies, by convexity, f (z)+ZX .gIz)<M
1 ^j. ly X ly y i i





which contradicts our assumption about the A.. Therefore (E) has solutions

for every finite F.

To complete the proof we must show 0„ T^ is non-empty. Let e.=jth unit

vector. We show that if F contains +e. l<j<n and the zero vector, then _P- T

is bounded. Since each T is closed, compactness yields the desired result.

For llifk we must have h. ($)=b.£g. (0) , f (0)+I:A .b .^L, h.(e.)=(j:h component of a.)

+ b,<g.(e.), and h. (-e.)<g. (-e. ) . Since all the X. are positive this implies1-1 J 1 J - 1 J 1

bounds on a., b.. Q.E.D.
1 i ^

Our proof of Theorem 3 works for any convex SCR which includes +e. and

0. By suitable translations, this implies the results for any fully dimen-

sional convex SCR . Further modifications yield the result for arbitrary

convex SCR .

I vould like to thank Richard Duff in and Robert Jeroslow for their

encouragement, anf for supplying me "sneak previews" of [2] and [4].
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